Platelet-rich plasma (PRP) is a biological treatment option that is increasingly used in sports medicine applications. Outcomes from treating tendon, ligament, muscle, and cartilage injuries with PRP have been variable across many studies, and these differences may be because of the variations in formulations and preparation of PRP. The purpose of this article is to describe the factors that determine the effects of PRP.

Oper Tech Sports Med 25:7-12 © 2017 Elsevier Inc. All rights reserved.

KEYWORDS Biologic injections, platelet-rich plasma

Introduction

Platelet-rich plasma (PRP) has become an increasingly used treatment in the field of sports medicine. The use of autologous blood products as an adjunct to treatment was first pioneered in cardiovascular surgery and in wound-healing applications. Oromaxillofacial surgeons then adopted its use, followed by the adoption in both animal and human musculoskeletal applications.

There is much interest in using this autologous treatment option for a wide variety of conditions, including cartilage lesions, tendinopathies, and early osteoarthritis. The numerous formulations and preparation methods of PRP vary widely. A recent meta-analysis reported 14 different indications for treatment and 9 different preparation systems used in clinical studies. When considering using PRP for treatment, analyzing the available literature, or designing investigational trials, it is important to understand the effects of different parameters of PRP preparations that may have on various conditions. The purpose of this article is to provide a broad overview of the differences in formulation and preparation techniques, various delivery methods, and the classification systems of PRP.

Classification Systems

Multiple authors have proposed classification systems for the various types of PRP. Dohan Ehrenfest et al. described a classification system (Table 1) based on the following 2 factors: cell content, primarily in reference to white blood cells, and a fibrin architecture. With these parameters, PRP can be grouped into 4 different types. Pure PRP (P-PRP), which does not contain leukocytes and has a low-density fibrin network. Leukocyte-rich PRP (L-PRP) has increased concentrations of white blood cells in addition to high concentration of platelets, but also has a low-density fibrin network. Next, pure platelet-rich fibrin is free of leukocytes, but has a high-density fibrin network. Finally, leukocyte- and platelet-rich fibrin combines both increased concentrations of leukocytes and a high-density fibrin network. The preparations with a low-density fibrin network allow for injectable applications, which are more commonly used in orthopedic and sports medicine conditions. Preparations with a high-density fibrin network, including both pure platelet-rich fibrin and leukocyte- and platelet-rich fibrin, allow for a clot with growth factors present in the matrix architecture.

DeLong et al. proposed the PAW classification (Table 2) that is based on 3 factors. The 3 components of this system are the number of platelets (P), the activation system (A), and whether white blood cells are present or not (W). Platelet concentration is separated into 4 groups, denoted as P1 through P4. P1 preparations have concentrations at or below baseline values, P2 concentrations are from baseline to 750,000 platelets/μL, P3 range from 750,000 platelets/μL to 1,250,000 platelets/μL, and P4 are concentrations more than 1,250,000 platelets/μL.
The usage of an exogenous activator is classified with an x. Finally, the leukocyte concentration is grouped as either above (A) or below (B) the baseline value. The neutrophil concentration is similarly grouped as above (α) or below (β) whole blood values. Although the PRP nomenclature remains variable and no single classification system is uniformly used, it is critical for clinicians to know what is in the milieu of PRP that they are injecting into their patients. Only then will the optimal type and timing of PRP injections for each clinical condition be determined.

Initial Preparation

PRP preparation begins with drawing the patient’s peripheral blood. Peripheral blood is composed of 93% red blood cells, 6% platelets, and 1% leukocytes. Care must be taken during the process of drawing blood, as there are parts of the blood draw technique that can influence the final PRP product. For example, premature activation of platelets may occur if a small needle is used to draw blood. Blood for use in PRP preparation should be drawn with 21-gauge or larger needle. Additionally, the speed with which blood is drawn may influence platelet quality, so blood should be aspirated slowly.

After blood is drawn from a patient, it undergoes a centrifugation process to separate the liquid and cellular components. The goal of this spinning process is to concentrate platelets and lower the relative volume of erythrocytes. The first spin is performed at approximately 900 g. The purpose of this step is to separate platelets from the red and white blood cells. Next, a second spin may or may not be employed. This second, faster spin is performed at 1500 g and functions to create a buffy coat and further concentrate the platelets into the same layer as the white blood cells.

There are 2 basic methods of PRP preparation, which are plasma-based and buffy coat based. Plasma-based preparations are produced with only the initial slow and short (5 minutes) spin and no second spin. This process leads to isolation of plasma and platelets while reducing leukocytes and erythrocytes from the preparation. The final volume of platelets from this method is usually 2-3 times more than the initial concentrations. Alternatively, a buffy coat–based preparation may be prepared. This method attempts to isolate the maximum level of platelets and does so with a second, high spin speed centrifugation for 10-15 minutes. Leukocytes and erythrocytes remain in the preparation, though the platelet concentrations are higher than those isolated by a plasma-based preparation, at 3-8 times the baseline concentrations.

The materials used for PRP preparation also affect the final product. Polypropylene tubes have been shown to be best for platelet preparation and storage. Tubes made from other materials, including glass and polystyrene, may lead to premature platelet activation or alterations in platelet morphology. For these reasons, researchers must note these specifications when describing a PRP protocol, and clinicians should follow these instructions when preparing PRP.

There are multiple commercial systems available to use to prepare PRP. Castillo et al. investigated 3 different systems (MTF Cascade, Arteriocyte Magellan, and Biomet GPS III) and showed that there was variability among the PRP preparations with respect to growth factor and leukocyte concentration.

Table 1 Classification of PRP Types

<table>
<thead>
<tr>
<th>Type of Platelet-Rich Plasma</th>
<th>Presence of Leukocytes?</th>
<th>Fibrin Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure platelet-rich plasma (P-PRP)</td>
<td>No</td>
<td>Low density</td>
</tr>
<tr>
<td>Leukocyte- and platelet-rich plasmas (L-PRP)</td>
<td>Yes</td>
<td>Low density</td>
</tr>
<tr>
<td>Pure platelet-rich fibrin (P-PRF)</td>
<td>No</td>
<td>High density</td>
</tr>
<tr>
<td>Leukocyte- and platelet-rich plasma (L-PRF)</td>
<td>Yes</td>
<td>High density</td>
</tr>
</tbody>
</table>

Table 2 PAW Classification of Platelet-Rich Plasma

<table>
<thead>
<tr>
<th>Elements of Classification System</th>
<th>Representation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelet concentration</td>
<td>P_1</td>
<td>Platelet concentration \leq baseline concentration</td>
</tr>
<tr>
<td></td>
<td>P_2</td>
<td>Platelet concentration from baseline to 750,000 platelets/μL</td>
</tr>
<tr>
<td></td>
<td>P_3</td>
<td>Platelet concentration from 750,000-1,250,000 platelets/μL</td>
</tr>
<tr>
<td></td>
<td>P_4</td>
<td>Platelet concentration $> 1,250,000$ platelets/μL</td>
</tr>
<tr>
<td>Activator</td>
<td>x</td>
<td>Exogenous activator used</td>
</tr>
<tr>
<td>White blood cell presence</td>
<td>A</td>
<td>Leukocyte concentration above baseline level</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Leukocyte concentration below baseline level</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>Neutrophil concentration above baseline level</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>Neutrophil concentration below baseline level</td>
</tr>
</tbody>
</table>
Platelet-rich plasma

There is a range, however, within which PRP can be effective, or research purposes.

Platelet Concentration

There are several patient-specific factors that can be modified to influence the concentration and quality of platelet from an individual patient. A high-fat meal has been shown to increase peripheral platelet concentration in healthy volunteers compared with that during a period of fasting. Curcumin rhythms also affect platelet concentration and function, with platelet concentrations increasing the afternoon and platelet activation decreasing from noon to midnight. All of these factors should be recognized when preparing PRP for clinical or research purposes.

Leukocyte Concentration

Leukocytes are found in the peripheral circulating blood and are a key component of the normal immune system. The grouping of leukocytes includes neutrophils, eosinophils, basophils, lymphocytes, and monocytes. Platelets and leukocytes interact in multiple different complex manners, including leukocytes binding to activated platelets for transmigration, and platelets improving recruitment of leukocytes to areas of inflammation.
leukocytes from the formulation strongly influences the function of PRP. Depending on the purpose for treatment and the location of injection, leukocytes may have positive or negative effects. Increased leukocyte concentrations are correlated with increased concentrations of inflammatory cytokines, such as interleukin-1β (IL-1β), TNF-α, IL-6, and IL-8. 29–31

There is a risk for muscle damage, if L-PRP is injected for the treatment of an acute muscle injury, primarily owing to neutrophils. Neutrophils are present shortly after muscle injury and help degrade byproducts of muscle damage. The actions of these cells, however, also may cause decreased muscle contractility and direct muscle cell membrane lysis. 32 Dragoo et al33 demonstrated an increased inflammatory response after the injection of rabbit tendons with L-PRP compared with leukocyte-poor PRP. In the L-PRP group, the tendon structure 5 days after injection was significantly more disrupted compared with the leukocyte-poor PRP. Additionally, the L-PRP group had significantly more fibrosis at 5 days than the leukocyte-poor PRP group. By 14 days, however, there were no observable differences among the groups as all tendons showed evidence of increased cellularity. McCarrel et al31 reported on the effects of PRP with varying leukocyte concentrations on healing in horse flexor tendons. High concentrations of leukocytes in PRP were associated with increased expression of IL-1β and TNF-α, which are observed in tendinopathy but not normal tendons. These findings suggest that the addition of leukocytes in PRP may be counterproductive when using PRP to treat tendon-based conditions.

The presence of leukocytes may alter the effects of PRP when injected intra-articularly. Filardo et al 34 treated 144 patients with all levels of knee osteoarthritis (Kellgren-Lawrence grades 0–4) with 3 injections of either platelet-rich growth factor, which was absent of leukocytes, or PRP, with 8,300 leukocytes/µL. Both groups showed significant improvement in International Knee Documentation Committee (IKDC) subjective scores and Tegner score, though there were no differences between the 2 in these outcomes. Pain and swelling, however, were significantly more common in the leukocyte-rich group compared with the leukocyte-poor group. Severe pain was observed in 20% of patients with PRP, compared to 7% of patients with platelet-rich growth factor injection (P = 0.0005). Swelling was found in 15% of patients with PRP injection vs 4% of patients with platelet-rich growth factor injection (P = 0.03).

An in vitro study by Cavallo et al35 explored the different effects of pure PRP without leukocytes and PRP on osteoarthritic chondrocytes. Both formulations, as well as platelet-poor plasma, were tested in 3 concentrations: 5%, 10%, and 20%. All formulations resulted in increased concentrations of pro-chondrogenic growth factors such as fibroblast growth factor-β and TGF-β1. The preparations also contained, however, factors including VEGF and PDGF-AB/BB that may work in opposition to the anabolic effects of fibroblast growth factor-β and TGF-β1. Chondrocyte cell proliferation was best at 7 days with PRP without leukocytes, whereas hyaluronan secretion was highest after administration of PRP with leukocytes. 36 These differential results highlight the importance of understand the specifics of PRP preparation and show that the ideal formulation will vary based on the clinical indication.

Activation Method, Carriers, and Additives

Different activators and carriers are used in PRP research and clinical applications with diverse clinical outcomes. PRP can be activated in a number of ways, and there has been debate about the necessity of, and optimal activation method used in clinical practice. As part of the activation pathway, platelets release alpha granules. 37 This process normally occurs whenever platelets come into contact with collagen, usually because of vascular injury. This natural process can be exploited in the clinical use of PRP to control the timing of growth-factor release.

The objective of exogenous activation of PRP to generate PRF before injection is to ensure that growth factors are immediately available. 38 Exogenous activation results in a clot that can then be implanted in the desired location. The fibrin matrix of PRF provides a structural framework with embedded growth factors. 3 This may allow for more targeted treatment and is often used in the surgical application of PRP. Bovine thrombin has been used as one of the methods to activate PRP. 39 Autologous thrombin is another option, either with or without calcium chloride. These chemicals function to catalyze the conversion of fibrinogen to fibrin. 40 The use of bovine thrombin, however, is not without disadvantage. This has been associated with hemorrhage, thrombosis, and immune reaction. 41, 42

Calcium chloride can be used as a weak exogenous activator of PRP, leading to release of PDGF-AB. 31 Patients, however, may experience increased pain because of calcium chloride owing to its low pH of 6.3. 3 Endogenous activation relies on the exposure of PRP to collagen or coagulation factors expressed after injection. Harrison et al44 compared concentrations of TGF-B1, PDGF-AB, and VEGF each day for 7 days after activation of PRP with either thrombin or collagen. The use of thrombin as an activator resulted in the immediate release of growth factors, whereas there was a showed a sustained-release pattern of growth factors over 7 days subsequent to activation with collagen.

Filardo et al45 applied PRP activated with 10% calcium chloride to patients with chronic degenerative changes of the knee. There were significant improvements observed in the IKDC scores, from 47% of normal at baseline to 67% at 1 year (P < 0.0005) and 59% at 2 years (P = 0.04). A sheep study on osteochondral defects showed that PRP polymerized with thrombin combined with microfracture was better than unactivated PRP and microfracture or microfracture alone. 30 Treatment with PRP polymerized with thrombin resulted in excellent fill of the defect and the mean stiffness that was similar when compared with normal cartilage. The defect fill was less for unactivated PRP and the biomechanical stiffness was significantly worse (P = 0.0007) for the microfracture group alone and the microfracture and unactivated PRP

D.A. Lansdown, L.A. Fortier
group. In treatment of focal cartilage injuries, activated PRP in gel form may reduce the risk of diffusion of growth factors through the knee and may function as a scaffold for cartilage repair.

Finally, it is important to consider the pH of any additive and its effect on platelet function. Wahlström et al. demonstrated that osteoblastic response to platelets was pH-dependent with more potent growth factors released in a more acidic environment. The pH-based variation in platelet function is also important to recognize when considering the use of local anesthetics. Borg et al. evaluated platelet function after incubation with lidocaine, bupivacaine, and tocainide. Lidocaine had the greatest ability to decrease platelet aggregation, and the effects of the local anesthetics on platelet function were time dependent. Porter et al. confirmed these findings, reporting that ropivicaine significantly interferes with normal platelet aggregation and coagulation. For these reasons, the necessity of local anesthetics should be carefully considered before using in conjunction with PRP.

Frequency of Injection

Various studies have employed different frequencies of PRP injections, and the optimal treatment schedule is not defined. Görmeli et al. compared 3 injections of PRP, spaced 7 days apart, to 1 PRP injection after 2 injections of saline, or 3 hyaluronic acid injections, or 3 saline injections for patients with knee osteoarthritis. Patients with early arthritis (Kellgren-Lawrence grades I-III) did best with the 3 consecutive PRP injections, as measured by significantly higher EQ-VAS and IKDC-subjective scores at 6 months after treatment and compared with a single-PRP injection or hyaluronic acid injections (P = 0.001). Gömbó et al. evaluated the efficacy of 2 intra-articular PRP injections to treat 50 patients with knee osteoarthritis. The patients in this study showed significant improvement in symptoms up to 1 year after treatment with these 2 injections. This study, however, did not have a control group to establish the necessity of the second injection. Overall, 2 separate studies showed that 3 PRP injections for patellar tendinopathy can provide effective results at 2-4 years after treatment. These studies did not, however, have a comparison group to allow for understanding of the effects of multiple injections or comparison to control. Multiple clinical studies have demonstrated a positive outcome with a single injection of PRP. Peerbooms et al. conducted a randomized control trial comparing PRP with corticosteroid injection for lateral epicondylitis. The investigators found significantly improved symptoms in the PRP-treated group, with mean improvement of 53.5% in this group compared with 14.0% improvement in the corticosteroid group (P < 0.001). In a follow-up study, these results of a single-PRP injection were maintained out to 2 years after the initial treatment. The ideal injection regimen remains undefined and should be an area of further research.

Conclusions

PRP is a promising biologic treatment with a wide range of applications in orthopedics and sports medicine. Multiple studies have demonstrated efficacy in a wide variety of challenging conditions, from tendinopathy to osteoarthritis. Understanding the factors that contribute to this variability will allow clinicians and researchers to appropriately use PRP and further define the role of PRP in the treatment of various clinical conditions.

References

30. Muylle L, Joos M, Wouters E, et al: Increased tumor necrosis factor alpha (TNF-alpha), interleukin 1, and interleukin 6 (IL-6) levels in the plasma of stored platelet concentrates. Relationship between TNF alpha and IL-6 levels and fibrin transduction reactions. Transfusion 33:195-199, 1993