Efficacy of Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis: A Meta-analysis of Randomized Controlled Trials

Wen-Li Dai, M.Sc., Ai-Guo Zhou, M.D., Hua Zhang, M.D., and Jian Zhang, M.D.

Purpose: To use meta-analysis techniques to evaluate the efficacy and safety of platelet-rich plasma (PRP) injections for the treatment of knee osteoarthritis (OA).

Methods: We performed a systematic literature search in PubMed, Embase, Scopus, and the Cochrane database through April 2016 to identify Level I randomized controlled trials that evaluated the clinical efficacy of PRP versus control treatments for knee OA. The primary outcomes were Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain and function scores. The primary outcomes were compared with their minimum clinically important differences (MCID)—defined as the smallest difference perceived as important by the average patient.

Results: We included 10 randomized controlled trials with a total of 1069 patients. Our analysis showed that at 6 months postinjection, PRP and hyaluronic acid (HA) had similar effects with respect to pain relief (WOMAC pain score) and functional improvement (WOMAC function score, WOMAC total score, International Knee Documentation Committee score, Lequesne score). At 12 months postinjection, however, PRP was associated with significantly better pain relief (WOMAC pain score, mean difference -2.83, 95% confidence interval [CI] -4.26 to -1.39, \(P = .0001 \)) and functional improvement (WOMAC function score, mean difference -12.53, 95% CI -14.58 to -10.47, \(P < .00001 \); WOMAC total score, International Knee Documentation Committee score, Lequesne score, standardized mean difference 1.05, 95% CI 0.21-1.89, \(P = .01 \)) than HA, and the effect sizes of WOMAC pain and function scores at 12 months exceeded the MCID (-0.79 for WOMAC pain and -2.85 for WOMAC function score). Compared with saline, PRP was more effective for pain relief (WOMAC pain score) and functional improvement (WOMAC function score) at 6 months and 12 months postinjection, and the effect sizes of WOMAC pain and function scores at 6 months and 12 months exceeded the MCID. We also found that PRP did not increase the risk of adverse events compared with HA and saline.

Conclusions: Current evidence indicates that, compared with HA and saline, intra-articular PRP injection may have more benefit in pain relief and functional improvement in patients with symptomatic knee OA at 1 year post-injection.

Level of Evidence: Level I, meta-analysis of Level I studies.

osteoarthritis (OA) of the knee is one of the most common chronic degenerative joint diseases affecting the quality of life of patients. Pain and loss of function are the main clinical features that lead to treatment. Although knee-replacement surgery provides an effective solution for severe knee OA, for younger and middle-aged patients with earlier stages of OA, conservative nonsurgical interventions have been proposed to treat the painful joint. Conservative nonsurgical interventions include analgesics, nonsteroidal and steroid anti-inflammatory drugs, and corticosteroid and hyaluronic acid (HA) injections. Although these agents have been beneficial in the short term, there is a lack of evidence that such interventions alter the progression of OA. More recently, platelet-rich plasma (PRP), a biological therapy, has become an intriguing treatment option to improve the status of the joint for patients with OA.

PRP is an autologous blood product that contains high concentrations of growth factors including vascular endothelial growth factor, transforming growth factor-β, epidermal growth factor, fibroblast growth factor,
and platelet-derived growth factor. These growth factors serve to promote local angiogenesis, modulate inflammation, inhibit catabolic enzymes and cytokines, recruit local stem cells and fibroblasts to sites of damage or injury, and induce healthy nearby cells to manufacture greater numbers of growth factors.12-14 Thus, the local use of PRP directly at the site of cartilage injury is thought to stimulate a natural healing cascade and accelerate the formation of cartilage repair tissue.10,15,16

Despite the promising preclinical findings and wide clinical applications, benefits and possible risks associated with PRP injection for knee OA remain a pertinent issue. To date, PRP-preparation techniques, platelet count, number of injections, the use of anticoagulants, activating agents, and severity of OA have varied considerably among studies. Studies reporting the effect of PRP injection in patients with knee OA convey conflicting results.17-19 In addition, because of small sample sizes, these studies were not powered adequately to detect the effect of PRP for patients with knee OA.

The purpose of this study was to use meta-analysis techniques to evaluate the efficacy and safety of PRP injections for knee OA treatment. We hypothesized that PRP injections would be more efficacious in pain relief and functional improvement in the treatment of patients with knee OA compared with HA and saline at 6 and 12 months postinjection.

Methods
We followed the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions20 to carry out the study, and we followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement21 to report our meta-analysis. There was no registered protocol.

Search Strategy
We conducted a systematic literature search in PubMed (1946 to April 30, 2016), Embase (1974 to April 30, 2016), Scopus (1966 to April 30, 2016), and the Cochrane database (issue 4, 2016) to identify relevant studies published in English. Electronic searches were performed with the use of Medical Subject Headings (MeSH) terms and corresponding keywords. The search terms used were (MeSH “Platelet-Rich Plasma” and keywords “platelet-rich plasma,” “PRP”), and (MeSH “Arthritis” and keywords “arthritis,” “osteoarthritis,” “gonarthrosis”). We also searched ClinicalTrials.gov and manually checked the bibliographies of identified articles, including relevant reviews and meta-analyses to identify additional eligible studies.

Selection Criteria
Two reviewers independently carried out the initial search, removed duplicate records, screened the titles and abstracts for relevance, and identified as included, excluded, or uncertain. In case of uncertainty, the full-text article was reviewed to identify eligibility. Discrepancies were resolved through discussion.

We included Level I RCTs in this study based on the following criteria: (1) population: patients diagnosed with knee OA based on the criteria described by the American College of Rheumatology22; (2) intervention: intra-articular injection with PRP; (3) comparison: intra-articular HA, saline, corticosteroid, exercise or no treatment; and (4) 1 or more of the following outcomes: Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) total score, WOMAC subscores (WOMAC pain, function scores),23 International Knee Documentation Committee (IKDC) Subjective Score,24 Lequesne score,25 and adverse events. Adverse events were defined as local and systemic reactions such as pain, stiffness, dizziness, headache, nausea, or infection.

Data Extraction
Data were extracted by 2 reviewers and confirmed by a third reviewer using a standardized electronic form. Disagreements were resolved through discussion before the analyses were performed. The following data were extracted: first author, year of publication, country, number of participants, affected knees, age, sex, body mass index, severity of OA, intervention, method of administration, and outcomes data. Predefined primary outcomes were WOMAC pain and function scores. Secondary outcomes included WOMAC total score, IKDC score, Lequesne score, and adverse events. When the same patients were reported in several publications, we retained only the largest study to avoid duplication of information. We also sought supplementary appendices of included studies or contacted corresponding authors to verify extracted data or request missing data.

Risk of Bias Assessment
Two reviewers used the Cochrane Risk of Bias tool20 to assess the risk of bias in the RCTs. Each study was reviewed and scored as high, low, or unclear risk of bias according to the following domains: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other bias. We calculated interobserver agreement for reviewer’s assessments of risk of bias with the Cohen κ statistic.26 Discrepancies between the reviewers were resolved by discussion until consensus was achieved.

Statistical Analysis
In each study and for the outcome measures (WOMAC total, pain and function scores, IKDC score, Lequesne score), we calculated the treatment effect from the difference between the preintervention and
postintervention changes in the treatment and control groups. For dichotomous outcome data (adverse events), we calculated relative risks (RRs) with 95% confidence intervals (CIs). For continuous outcome data, we calculated mean differences (MDs) with 95% CIs for the primary outcomes (WOMAC pain and function scores) and standardized mean differences (SMDs) with 95% CIs for the secondary outcomes (WOMAC total score, IKDC score, Lequesne score). For the primary outcomes (WOMAC pain and function scores), the pooled effect size was compared with their minimum clinically important differences (MCID)—defined as the smallest difference perceived as important by the average patient.27 When the magnitude of the treatment effect equals or exceeds the MCID, the management of a patient should be changed, unless there are adverse side-effects or excessive costs.28

Based on previous work, the MCID for changes in WOMAC pain and function scores was set at 20%.29-31 Heterogeneity across studies was tested by using the I² statistic. I² values of 25%, 50%, and 75% were considered to indicate low, moderate, and high heterogeneity, respectively.32 If I² < 50%, a fixed-effects model was used; otherwise, a random-effects model was used. To check the effect of various factors on the primary outcomes, we performed subgroup analyses according to number of PRP injections (1 or ≥2), PRP spinning approach (single or double), mean platelet concentration (platelet <5 x baseline or >5 x baseline) leukocyte-poor (LP) or leukocyte-rich (LR) PRP, risk of bias (low or unclear/high), and whether an activator was used. We assessed publication bias by using the Begg and Egger tests.33,34 All statistical analyses were performed by RevMan 5.3 (The Cochrane Collaboration, Copenhagen, Denmark) and Stata 13.1 (StataCorp LP, College Station, TX). The results were considered statistically significant at 2-sided P values <.05.

Results

Literature Search

In the initial search, we identified 1259 records. After examination of the titles and abstracts, there were 16 potentially eligible studies assessed for inclusion. After we reviewed the full text, 10 RCTs35-44 were included in the meta-analysis. The study flow diagram, including the reasons for exclusion of studies, is shown in Figure 1.

Study Characteristics

The study characteristics are presented in Table 1. These studies were published between 2011 and 2016. Eight studies35-38,40-42,44 included comparisons of PRP with HA, whereas 3 studies36,39,43 included comparisons of PRP with saline. The sample size of the studies ranged from 21 to 183, with a total of 1069 patients (1142 knees) comprising 562 (612 knees) in the PRP group, 429 (429 knees) in the HA group, and 78 (101 knees) in the saline group. Five of the studies had a total follow-up of 12 months,36,37,41,43,44 4 studies had a follow-up of 6 months,35,38,39,42 and 1 had a total follow-up of 3 months.36 The severity of OA was classified by the Kellgren and Lawrence grading scale in 8 studies35-38,40,41,43,44 and the Ahlbäck grading scale in 2 studies.39,42 The distribution of OA severity among the studies is shown in Table 1. The preparation and administration of PRP varied among studies.

Risk of Bias

Among the 10 studies, 2 studies39,43 were judged to be at low risk of bias, whereas 8 studies35-38,40-42,44 were found to have a high risk of bias (Fig 2). Adequate randomized sequence was generated in 9 studies.36-44 Appropriate allocation concealment was reported in 7 studies,37-40,42-44 binding of participants...
<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>No. of Patients</th>
<th>Age, yr</th>
<th>Sex (Male: Female), n</th>
<th>BMI</th>
<th>Follow-up, mo</th>
<th>Radiographic Classification</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerza et al. 35</td>
<td>Italy</td>
<td>60 60</td>
<td>66.5 66.2</td>
<td>25:35 28:32</td>
<td>NR NR - 6</td>
<td>0</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>Duymus et al. 36</td>
<td>Turkey</td>
<td>33 34</td>
<td>60.4 60.3</td>
<td>1:32 1:33</td>
<td>27.6 28.4</td>
<td>12</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Filardo et al. 37</td>
<td>Italy</td>
<td>94 89</td>
<td>53.3 57.6</td>
<td>60:34 52:37</td>
<td>27.6 26.9</td>
<td>12</td>
<td>60</td>
<td>21</td>
</tr>
<tr>
<td>Gormeli et al. 38</td>
<td>Turkey</td>
<td>39 39 40</td>
<td>53.7 53.5 52.8</td>
<td>16:23 17:22 20:20</td>
<td>28.7 29.7 29.5</td>
<td>6</td>
<td>0</td>
<td>26 (I-III)</td>
</tr>
<tr>
<td>Patel et al. 39</td>
<td>India</td>
<td>25 23</td>
<td>51.6 53.7</td>
<td>5:20 6:17</td>
<td>25.8 26.2</td>
<td>6</td>
<td>0</td>
<td>25 (I-III)</td>
</tr>
<tr>
<td>Paterson et al. 40</td>
<td>Australia</td>
<td>11 10</td>
<td>49.9 52.7</td>
<td>11:16</td>
<td>26.3</td>
<td>0</td>
<td>25 (I-III)</td>
<td>13</td>
</tr>
<tr>
<td>Raeissadat et al. 41</td>
<td>Iran</td>
<td>77 62</td>
<td>56.9 61.1</td>
<td>8:69 15:47</td>
<td>28.2 27.0</td>
<td>12</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Sanchez et al. 42</td>
<td>Spain</td>
<td>89 87</td>
<td>60.5 58.9</td>
<td>43:46 42:45</td>
<td>27.9 28.2</td>
<td>6</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Smith et al. 43</td>
<td>USA</td>
<td>15 15</td>
<td>53.5 46.6</td>
<td>5:10 6:9</td>
<td>29.5 27.5</td>
<td>12</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Vaquerizo et al. 44</td>
<td>Spain</td>
<td>48 48</td>
<td>62.4 64.8</td>
<td>16:32 22:26</td>
<td>30.7 31.0</td>
<td>12</td>
<td>2.6</td>
<td>(mean score)</td>
</tr>
</tbody>
</table>

BMI, body mass index; HA, hyaluronic acid; K-L, Kellgren and Lawrence grading scale; PRP, platelet-rich plasma; NR, not reported.

*PRP group.
1HA group.
13 doses of PRP group.
11 dose of PRP group.
3saline group.
*2 doses of PRP group.
was clear in 6 studies,37-40,42,43 and blinding of outcome assessors was reported only in 2 studies.39,43 The Cohen κ statistic for agreement on risk of bias was 0.86.

PRP Versus HA

Among the studies comparing PRP with HA, the WOMAC pain score was reported in 4 studies,36,41,42,44 WOMAC function score in 4 studies,36,41,42,44 WOMAC total score in 5 studies,35,36,41,42,44 IKDC score in 2 studies,37,38 Lequesne score in 2 studies,12,44 and adverse events in 4 studies.37,40,42,44

WOMAC Pain Score (PRP vs HA)

At 6 months, a total of 3 studies36,42,44 (339 participants) provided relevant data on the WOMAC pain score. The pooled analysis showed that there was no significant difference between the PRP and HA groups (MD -1.54, 95% CI -4.27 to 1.20, $P = .27$, Fig 3). Heterogeneity was significant in the pooled result ($I^2 = 96\%$).

At 12 months, a total of 3 studies36,41,44 (302 participants) provided relevant data on the WOMAC pain score. The pooled analysis showed that PRP was significantly more efficacious in pain relief compared with HA (MD -2.83, 95% CI -4.26 to -1.39, $P = .0001$, Fig 4), with significant heterogeneity ($I^2 = 79\%$).

For the WOMAC pain score at 6 and 12 months, the overall effect sizes exceeded the MCID (-0.83 for WOMAC pain score at 6 months and -0.79 at 12 months). CI values suggest that the smallest treatment effect exceeded the MCID for the WOMAC pain score at 12 months, whereas for WOMAC pain score at 6 months the CI values encompassed the MCID.

WOMAC Function Score (PRP vs HA)

At 6 months, a total of 3 studies24,30,32 (339 participants) provided relevant data on the WOMAC function score. The pooled analysis showed that there was no significant difference between PRP and HA groups (MD -4.39, 95% CI -10.51 to 1.74, $P = .16$, Fig 5). Heterogeneity was significant in the pooled result ($I^2 = 87\%$).

At 12 months, a total of 3 studies24,29,32 (302 participants) provided relevant data on the WOMAC function score. The pooled analysis showed that PRP was significantly more efficacious in functional improvement compared with HA (MD: -12.53, 95% CI: -14.58 to -10.47, $P < .00001$, Fig 6), with moderate heterogeneity ($I^2 = 31\%$).
For the WOMAC function score at 6 and 12 months, the overall effect sizes exceeded the MCID (−2.74 for WOMAC function score at 6 months and −2.85 at 12 months). CI values suggest that the smallest treatment effect exceeded the MCID for the WOMAC function score at 12 months, whereas for WOMAC function score at 6 months the CI values encompassed the MCID.

WOMAC Total Score, IKDC Score, and Lequesne Score (PRP vs HA)

At 6 months, 4 studies35,36,42,44 (459 participants) provided relevant data on the WOMAC total score, 2 studies37,38 (261 participants) provided relevant data on the IKDC score, and 2 studies42,44 (272 participants) provided relevant data on the Lequesne score. The pooled analysis showed that there was no significant difference between PRP and HA group (SMD 0.68, 95% CI 0.04 to 1.41, P = .06). Heterogeneity was significant in the pooled result (I² = 95%).

At 12 months, 3 studies36,41,44 (302 participants) provided relevant data on the WOMAC total score, 1 study37 (183 participants) provided relevant data on the IKDC score, and 1 study44 (96 participants) provided relevant data on the Lequesne score. The pooled analysis showed that PRP was associated with significantly better outcome compared with HA (SMD 1.05, 95% CI 0.21-1.89, P = .01). Again, heterogeneity was significant in the pooled result (I² = 94%).

Adverse Events (PRP vs HA)

Among the 10 studies, 4 studies37,40,42,44 compared the risk of adverse events in PRP versus HA. The pooled analysis showed that there was no significant difference between PRP and HA group (RR 0.63, 95% CI 0.20-1.98, P = .43, Fig 7). Heterogeneity was significant in the pooled result (I² = 66%).

PRP Versus Saline

Among the studies comparing PRP with saline, the WOMAC pain and function scores were reported in 1 study43 and adverse events in 2 studies.39,43

WOMAC Pain Score (PRP vs Saline)

Smith et al43 found a statistically significant difference in the WOMAC pain score in favor of PRP compared with saline at 6 months (MD −5.00, 95% CI −6.98 to −3.02, P < .00001) and 12 months (MD −6.00, 95% CI −8.32 to −3.68, P < .00001) postinjection.

For the WOMAC pain score at 6 and 12 months, the overall effect sizes exceeded the MCID (−1.4 for WOMAC pain score at 6 months and −1.6 at 12 months). CI values suggest that the smallest treatment effect exceeded the MCID for the WOMAC pain score at 6 and 12 months.

Fig 4. Forest plot of comparison: PRP versus HA; outcome: WOMAC pain score at 12 months. (CI, confidence interval; HA, hyaluronic acid; PRP, platelet-rich plasma; SD, standard deviation; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.)

Fig 5. Forest plot of comparison: PRP versus HA; outcome: WOMAC function score at 6 months. (CI, confidence interval; HA, hyaluronic acid; PRP, platelet-rich plasma; SD, standard deviation; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.)
WOMAC Function Score (PRP vs Saline)

Smith et al[^43] found a statistically significant difference in the WOMAC function score in favor of PRP compared with saline at 6 months (MD -24.00, 95% CI -31.30 to -16.70, $P < .00001$) and 12 months (MD -24.00, 95% CI -30.01 to -17.99, $P < .00001$) postinjection.

For the WOMAC function score at 6 and 12 months, the overall effect sizes exceeded the MCID (-4.8 for WOMAC function score at 6 months and -5 at 12 months). CI values suggest that the smallest treatment effect exceeded the MCID for the WOMAC function score at 6 and 12 months.

Adverse Events (PRP vs Saline)

There were 2 studies[^39,^43] that compared the risk of adverse events in PRP versus saline, the pooled analysis showed that there was no significant difference between PRP and saline group (RR 2.63, 95% CI 0.04 to 158.93, $P = .64$), with significant heterogeneity ($I^2 = 73\%$).

Subgroup Analysis

The results of subgroup analyses are presented in Table 2. The subgroup analysis based on number of PRP injections (1 or ≥ 2), PRP spinning approach (single or double), mean platelet concentration (platelet $< 5 \times$ baseline or $> 5 \times$ baseline), LP or LR PRP, risk of bias (low or unclear/high), and whether an activator was performed for WOMAC pain and function scores. The findings of WOMAC pain and function scores at 6 and 12 months were consistent in all subgroup analyses except for the platelet $> 5 \times$ baseline, LR PRP, using an activator subgroups. In the subgroups of platelet $> 5 \times$ baseline, LR PRP and using an activator, we found that HA was associated with significantly better pain relief than PRP at 6 month.

Publication Bias

The Egger and Begg tests were performed to investigate publication bias. The Egger test indicated no evidence of publication bias ($P = .47$). Similarly, in the Begg test, there was no evidence of substantial publication bias ($P > .99$).

Discussion

The principal findings of this study show that at 6 months postinjection, PRP and HA had similar effects with respect to pain relief (WOMAC pain score) and functional improvement (WOMAC function score, WOMAC total score, IKDC score, Lequesne score). At 12 months postinjection, however, PRP was associated with significantly better pain relief (WOMAC pain score) and functional improvement (WOMAC function score, WOMAC total score, IKDC score, Lequesne score).

[^43]: Smith et al.
Table 2. Subgroup Analyses of PRP Compared With HA

<table>
<thead>
<tr>
<th>Factors</th>
<th>WOMAC Pain, 6 mo</th>
<th>WOMAC Function, 6 mo</th>
<th>WOMAC Pain, 12 mo</th>
<th>WOMAC Function, 12 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trials</td>
<td>MD (95% CI)</td>
<td>P</td>
<td>I², %</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>-1.54 (-4.27, 1.20)</td>
<td>.27</td>
<td>96</td>
</tr>
<tr>
<td>Number of PRP injections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>≥2</td>
<td>3</td>
<td>-1.54 (-4.27, 1.20)</td>
<td>.27</td>
<td>96</td>
</tr>
<tr>
<td>PRP spinning approach</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>3</td>
<td>-1.54 (-4.27, 1.20)</td>
<td>.27</td>
<td>96</td>
</tr>
<tr>
<td>Double</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Mean platelet concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelet <5 × baseline</td>
<td>2</td>
<td>-2.80 (-6.43, 0.82)</td>
<td>.13</td>
<td>94</td>
</tr>
<tr>
<td>Platelet >5 × baseline</td>
<td>1</td>
<td>0.90 (0.10, 1.70)</td>
<td>0.03</td>
<td>NA</td>
</tr>
<tr>
<td>LP or LR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>2</td>
<td>-2.80 (-6.43, 0.82)</td>
<td>.13</td>
<td>94</td>
</tr>
<tr>
<td>LR</td>
<td>1</td>
<td>0.90 (0.10, 1.70)</td>
<td>0.03</td>
<td>NA</td>
</tr>
<tr>
<td>Activator used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>-2.80 (-6.43, 0.82)</td>
<td>.13</td>
<td>94</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>0.90 (0.10, 1.70)</td>
<td>0.03</td>
<td>NA</td>
</tr>
<tr>
<td>Risk of bias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Unclear/high</td>
<td>3</td>
<td>-1.54 (-4.27, 1.20)</td>
<td>.27</td>
<td>96</td>
</tr>
</tbody>
</table>

HA, hyaluronic acid; LP, leukocyte-poor PRP; LR, leukocyte-rich PRP; NA, not applicable; PRP, platelet-rich plasma; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.
score) than HA. Compared with saline, PRP was associated with significantly better pain relief (WOMAC pain score) and functional improvement (WOMAC function score) at 6 months and 12 months post-injection. We also found PRP did not increase the risk of adverse events compared with HA and saline.

In the past few years, the use of PRP has been extended to the treatment of several musculoskeletal injuries. The application of PRP in patients with OA was developed because of the physiological roles of several bioactive proteins and growth factors expressed in platelets, which lead to tissue regeneration. Despite technique and formulation discrepancies, intra-articular PRP injection was reported to be effective in degenerative knees in several studies. Furthermore, a study that explored the mechanism of PRP found that in synovium and cartilage harvested from patients undergoing total knee arthroplasty, PRP could stimulate HA production, reduce cartilage catabolism, and increase cartilage synthetic activity. With better improvements in both pain and function than saline at 6 and 12 months and HA at 12 months, this meta-analysis reinforces the idea that PRP has the potential to be an option for patients with knee OA.

Theoretically, LR PRP may be detrimental to tissues because of the proinflammatory substances that they release; however, in the subgroup analysis, the results of WOMAC pain at 12 months, function at 6 and 12 months remained unchanged in LP and LR PRP. Similarly, most of these results were also consistent in different PRP spinning approaches (single or double) and platelet concentration (platelet <5 × baseline or >5 × baseline) groups, which suggested that these factors may have little influence on the efficacy of PRP. Given the small numbers of studies and patients involved in subgroup analyses, however, these findings require further confirmation.

During the last 25 years, the concept of an MCID has emerged in the outcomes literature. A clinically important difference is defined as a change or difference in the outcome measure that would be perceived as important and beneficial by the clinician or the patient. An MCID is therefore a threshold value for such change. It can be estimated with an anchor-based approach (which correlates the score of interest with a known measure of clinical change) or a distribution-based approach (which suggests that one-half of an standard deviation of a continuous outcome score constitutes a clinically meaningful difference). In Outcome Measures in Rheumatology (OMERACT) meetings 5 to 7, the anchor-based method was recommended as the method of choice. The MICD aids clinicians a tool in evaluating therapeutic options and determining whether significant outcomes will have clinically meaningful implications. In our study, the effect sizes of primary outcomes (WOMAC pain and function scores) were compared with their MCID. Our meta-analysis shows that at 12 months, PRP was associated with better pain relief and function improvement compared with HA, because the smallest treatment effect was greater than the MCID (ie, the lower limit of the CI of WOMAC pain and function scores was greater than the MCID). However, at 6 months, the clinical importance of PRP injection is not clear because the CI of the effect size encompassed the MCID for WOMAC pain and function scores.

Differences between the current meta-analysis and previous meta-analyses should be noted. In a previous meta-analysis of 6 studies comparing PRP and control (HA and saline) in patients with knee OA, Khoshbin et al found that intra-articular PRP injections have beneficial effects based on the WOMAC total score and IKDC score in the treatment of patients with knee OA compared with HA and saline at 6 months; however, 2 observational studies accounted for 32.8%, 41.8%, 51.0%, and 51.0% of the total weight in the primary analysis of the WOMAC total score, IKDC score, VAS for pain and patient satisfaction, respectively. Furthermore, the authors pooled the HA and saline together as a control group to be compared against PRP group. Therefore, their results may not be considered as definitive.

Similarly, in another meta-analysis comprising 6 RCTs and 4 observational studies, Laudy et al also concluded that PRP reduced pain and improved function more effectively than HA in patients with knee OA based on WOMAC pain (MD −0.53, 95% CI −0.77 to −0.28, P < .0001) and function (MD −0.41, 95% CI −0.65 to −0.17, P = .001) scores at 6 months. However, the results were based on an improper model of fixed effects model of Mantel-Haenszel due to significant heterogeneity (I² = 94% both for WOMAC pain and function scores). If adopting appropriate random effects model, no significant association was detected between PRP and HA in patients with knee OA on WOMAC pain (MD −0.73, 95% CI −1.83 to 0.37, P = .20) and function (MD −0.60, 95% CI −1.66 to −0.47, P = .27) scores. In their updated meta-analysis comprising 6 RCT and 11 observational studies, similar results were found that PRP reduced pain and improved function more effectively than HA in patients with knee OA at 6 months. In another meta-analysis comprising 4 observational studies, 3 quasi-experimental studies, and 5 RCTs, Chang et al concluded that PRP injections in patients with degenerative knee pathology showed continual efficacy for 12 months; however, this conclusion was only based on the function scores, they did not extract the data.
reflecting the pain relief and analyze them. Compared with the previous meta-analyses, our updated meta-analysis included 10 studies and the data were all from RCTs.

The results of the present meta-analysis were based on change from preinjection to postinjection scores, which was different from the previous meta-analyses that only used postinjection scores. In contrast to the previous meta-analyses, the present meta-analysis suggested that PRP and HA had similar effects with respect to pain relief (WOMAC pain score) and functional improvement (WOMAC function score, WOMAC total score, IKDC score, Lequesne index) at 6 months postinjection. Besides, we found that at 12 months postinjection, PRP was more effective in pain relief (WOMAC pain score) and functional improvement (WOMAC function score, WOMAC total score, Lequesne score) than HA. Moreover, we further compared the effect size of WOMAC pain and function scores with its MCID and found PRP was associated with better pain relief and function improvement compared with HA at 12 months, because the magnitude of the improvement was greater than the MCID.

Limitations

Some limitations of our study need to be mentioned. First, the studies included were heterogeneous in terms of PRP preparation (use of the single- vs double-spinning technique, speed, length of centrifugation, whether used an activator), PRP and HA administration (frequency of PRP and HA injections, injection volume), HA types, and preparation. These factors may lead to potentially differing biological activity of PRP and HA that can result in different physiological responses in patients. There is also substantial heterogeneity among the patients included in the meta-analyses, including patient age, sex, body mass index, activity level, or OA grade. Second, although 10 studies representing 1069 patients were included, the majority of the conclusions are based on 2-3 studies and, at times, 1 study alone; thus, the type II statistical error due to an underpowered analysis might be occurred. In addition, the studies included in the analysis suffered from important methodologic limitations. The potential risk of bias that those studies poses has weakened our inference of the treatment effects. Finally, we only included studies published in English, which might lead to a language or cultural bias.

Conclusions

Current evidence indicates that compared with HA and saline, intra-articular PRP injection may have more benefit in pain relief and functional improvement in patients with symptomatic knee OA at 1 year postinjection.

Acknowledgment

The authors thank information specialist Xiao Han from Chongqing Medical University, Chongqing, China, for assistance in the literature search.

References

Appendix Table 1. PRP Preparation and Administration Protocols

<table>
<thead>
<tr>
<th>Authors</th>
<th>No. Injections</th>
<th>PRP Volume per Injection, mL</th>
<th>PRP Spinning Approach</th>
<th>Mean Platelet Concentration</th>
<th>LP or LR</th>
<th>PRP Activator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerza et al.35 (2012)</td>
<td>4 (q 1 wk)</td>
<td>5.5</td>
<td>Single</td>
<td>>5 × baseline</td>
<td>LP</td>
<td>None</td>
</tr>
<tr>
<td>Duymus et al.36 (2016)</td>
<td>2 (q 1 mo)</td>
<td>5</td>
<td>Single</td>
<td>>5 × baseline</td>
<td>LR</td>
<td>None</td>
</tr>
<tr>
<td>Filardo et al.37 (2015)</td>
<td>3 (q 1 wk)</td>
<td>5</td>
<td>Double</td>
<td>(4.6 ± 1.4) × baseline</td>
<td>LR</td>
<td>CaCl₂</td>
</tr>
<tr>
<td>Gormeli et al.38 (2016)</td>
<td>3 (q 1 wk)</td>
<td>5</td>
<td>Double</td>
<td>>5 × baseline</td>
<td>LR</td>
<td>CaCl₂</td>
</tr>
<tr>
<td>Patel et al.39 (2013)</td>
<td>2 (q 3 wk)</td>
<td>8</td>
<td>Single</td>
<td><5 × baseline</td>
<td>LP</td>
<td>CaCl₂</td>
</tr>
<tr>
<td>Paterson et al.40 (2016)</td>
<td>NR</td>
<td>3</td>
<td>Double</td>
<td>NR</td>
<td>LR</td>
<td>Ultraviolet light</td>
</tr>
<tr>
<td>Raeissadat et al.41 (2015)</td>
<td>2 (q 4 wk)</td>
<td>4-6</td>
<td>Double</td>
<td>>5 × baseline</td>
<td>LR</td>
<td>None</td>
</tr>
<tr>
<td>Sanchez et al.42 (2012)</td>
<td>3 (q 1 wk)</td>
<td>8</td>
<td>Single</td>
<td><5 × baseline</td>
<td>LP</td>
<td>CaCl₂</td>
</tr>
<tr>
<td>Smith et al.43 (2016)</td>
<td>3 (q 1 wk)</td>
<td>3-8</td>
<td>Single</td>
<td><5 × baseline</td>
<td>LP</td>
<td>None</td>
</tr>
<tr>
<td>Vaquerizo et al.44 (2013)</td>
<td>3 (q 2 wk)</td>
<td>8</td>
<td>Single</td>
<td><5 × baseline</td>
<td>LP</td>
<td>CaCl₂</td>
</tr>
</tbody>
</table>

LP, leukocyte-poor PRP; LR, leukocyte-rich PRP; NR, not reported; PRP, platelet-rich plasma; q, every.